热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

哈密顿圈|回溯6

哈密顿圈|回溯-6原文:https://www.geesfo

哈密顿圈|回溯-6

原文:https://www . geesforgeks . org/Hamiltonian-cycle-backtracking-6/

无向图中的哈密顿路径是一条恰好访问每个顶点一次的路径。哈密尔顿循环(或哈密尔顿电路)是哈密尔顿路径,使得从哈密尔顿路径的最后一个顶点到第一个顶点有一条边(在图中)。确定给定的图是否包含哈密顿圈。如果包含,则打印路径。以下是所需功能的输入和输出。
输入:
一个 2D 数组图[V][V]其中 V 是图中的顶点数,图[V][V]是图的邻接矩阵表示。如果有从 I 到 j 的直接边,则值图[i][j]为 1,否则图[i][j]为 0。
输出:
应该包含哈密顿路径的数组路径[V]。路径[i]应该代表哈密顿路径中的第 I 个顶点。如果图中没有哈密顿圈,代码也应该返回 false。
例如,下图中的哈密顿圈是{0,1,2,4,3,0}。

(0)--(1)--(2)
| / \ |
| / \ |
| / \ |
(3)-------(4)

下图不包含任何哈密顿圈。

(0)--(1)--(2)
| / \ |
| / \ |
| / \ |
(3) (4)

朴素算法
生成所有可能的顶点配置,并打印满足给定约束的配置。会有 n 个!(n 阶乘)构型。

while there are untried conflagrations
{
generate the next configuration
if ( there are edges between two consecutive vertices of this
configuration and there is an edge from the last vertex to
the first ).
{
print this configuration;
break;
}
}

回溯算法
创建一个空路径数组,并在其中添加顶点 0。添加其他顶点,从顶点 1 开始。在添加顶点之前,检查它是否与先前添加的顶点相邻,并且尚未添加。如果我们找到这样一个顶点,我们就把这个顶点作为解的一部分。如果我们没有找到顶点,那么我们返回假。

回溯解决方案的实现
以下是回溯解决方案的实现。

C++

/* C++ program for solution of Hamiltonian
Cycle problem using backtracking */
#include
using namespace std;
// Number of vertices in the graph
#define V 5
void printSolution(int path[]);
/* A utility function to check if
the vertex v can be added at index 'pos'
in the Hamiltonian Cycle constructed
so far (stored in 'path[]') */
bool isSafe(int v, bool graph[V][V],
            int path[], int pos)
{
    /* Check if this vertex is an adjacent
    vertex of the previously added vertex. */
    if (graph [path[pos - 1]][ v ] == 0)
        return false;
    /* Check if the vertex has already been included.
    This step can be optimized by creating
    an array of size V */
    for (int i = 0; i         if (path[i] == v)
            return false;
    return true;
}
/* A recursive utility function
to solve hamiltonian cycle problem */
bool hamCycleUtil(bool graph[V][V],
                  int path[], int pos)
{
    /* base case: If all vertices are
    included in Hamiltonian Cycle */
    if (pos == V)
    {
        // And if there is an edge from the
        // last included vertex to the first vertex
        if (graph[path[pos - 1]][path[0]] == 1)
            return true;
        else
            return false;
    }
    // Try different vertices as a next candidate
    // in Hamiltonian Cycle. We don't try for 0 as
    // we included 0 as starting point in hamCycle()
    for (int v = 1; v     {
        /* Check if this vertex can be added
        // to Hamiltonian Cycle */
        if (isSafe(v, graph, path, pos))
        {
            path[pos] = v;
            /* recur to construct rest of the path */
            if (hamCycleUtil (graph, path, pos + 1) == true)
                return true;
            /* If adding vertex v doesn't lead to a solution,
            then remove it */
            path[pos] = -1;
        }
    }
    /* If no vertex can be added to
    Hamiltonian Cycle constructed so far,
    then return false */
    return false;
}
/* This function solves the Hamiltonian Cycle problem
using Backtracking. It mainly uses hamCycleUtil() to
solve the problem. It returns false if there is no
Hamiltonian Cycle possible, otherwise return true
and prints the path. Please note that there may be
more than one solutions, this function prints one
of the feasible solutions. */
bool hamCycle(bool graph[V][V])
{
    int *path = new int[V];
    for (int i = 0; i         path[i] = -1;
    /* Let us put vertex 0 as the first vertex in the path.
    If there is a Hamiltonian Cycle, then the path can be
    started from any point of the cycle as the graph is undirected */
    path[0] = 0;
    if (hamCycleUtil(graph, path, 1) == false )
    {
        cout <<"\nSolution does not exist";
        return false;
    }
    printSolution(path);
    return true;
}
/* A utility function to print solution */
void printSolution(int path[])
{
    cout <<"Solution Exists:"
            " Following is one Hamiltonian Cycle \n";
    for (int i = 0; i         cout <    // Let us print the first vertex again
    // to show the complete cycle
    cout <    cout <}
// Driver Code
int main()
{
    /* Let us create the following graph
        (0)--(1)--(2)
        | / \ |
        | / \ |
        | / \ |
        (3)-------(4) */
    bool graph1[V][V] = {{0, 1, 0, 1, 0},
                        {1, 0, 1, 1, 1},
                        {0, 1, 0, 0, 1},
                        {1, 1, 0, 0, 1},
                        {0, 1, 1, 1, 0}};
    // Print the solution
    hamCycle(graph1);
    /* Let us create the following graph
    (0)--(1)--(2)
    | / \ |
    | / \ |
    | / \ |
    (3) (4) */
    bool graph2[V][V] = {{0, 1, 0, 1, 0},
                         {1, 0, 1, 1, 1},
                         {0, 1, 0, 0, 1},
                         {1, 1, 0, 0, 0},
                         {0, 1, 1, 0, 0}};
    // Print the solution
    hamCycle(graph2);
    return 0;
}
// This is code is contributed by rathbhupendra

C

/* C program for solution of Hamiltonian Cycle problem
   using backtracking */
#include
// Number of vertices in the graph
#define V 5
void printSolution(int path[]);
/* A utility function to check if the vertex v can be added at
   index 'pos' in the Hamiltonian Cycle constructed so far (stored
   in 'path[]') */
bool isSafe(int v, bool graph[V][V], int path[], int pos)
{
    /* Check if this vertex is an adjacent vertex of the previously
       added vertex. */
    if (graph [ path[pos-1] ][ v ] == 0)
        return false;
    /* Check if the vertex has already been included.
      This step can be optimized by creating an array of size V */
    for (int i = 0; i         if (path[i] == v)
            return false;
    return true;
}
/* A recursive utility function to solve hamiltonian cycle problem */
bool hamCycleUtil(bool graph[V][V], int path[], int pos)
{
    /* base case: If all vertices are included in Hamiltonian Cycle */
    if (pos == V)
    {
        // And if there is an edge from the last included vertex to the
        // first vertex
        if ( graph[ path[pos-1] ][ path[0] ] == 1 )
           return true;
        else
          return false;
    }
    // Try different vertices as a next candidate in Hamiltonian Cycle.
    // We don't try for 0 as we included 0 as starting point in hamCycle()
    for (int v = 1; v     {
        /* Check if this vertex can be added to Hamiltonian Cycle */
        if (isSafe(v, graph, path, pos))
        {
            path[pos] = v;
            /* recur to construct rest of the path */
            if (hamCycleUtil (graph, path, pos+1) == true)
                return true;
            /* If adding vertex v doesn't lead to a solution,
               then remove it */
            path[pos] = -1;
        }
    }
    /* If no vertex can be added to Hamiltonian Cycle constructed so far,
       then return false */
    return false;
}
/* This function solves the Hamiltonian Cycle problem using Backtracking.
  It mainly uses hamCycleUtil() to solve the problem. It returns false
  if there is no Hamiltonian Cycle possible, otherwise return true and
  prints the path. Please note that there may be more than one solutions,
  this function prints one of the feasible solutions. */
bool hamCycle(bool graph[V][V])
{
    int *path = new int[V];
    for (int i = 0; i         path[i] = -1;
    /* Let us put vertex 0 as the first vertex in the path. If there is
       a Hamiltonian Cycle, then the path can be started from any point
       of the cycle as the graph is undirected */
    path[0] = 0;
    if ( hamCycleUtil(graph, path, 1) == false )
    {
        printf("\nSolution does not exist");
        return false;
    }
    printSolution(path);
    return true;
}
/* A utility function to print solution */
void printSolution(int path[])
{
    printf ("Solution Exists:"
            " Following is one Hamiltonian Cycle \n");
    for (int i = 0; i         printf(" %d ", path[i]);
    // Let us print the first vertex again to show the complete cycle
    printf(" %d ", path[0]);
    printf("\n");
}
// driver program to test above function
int main()
{
   /* Let us create the following graph
      (0)--(1)--(2)
       |   / \   |
       |  /   \  |
       | /     \ |
      (3)-------(4)    */
   bool graph1[V][V] = {{0, 1, 0, 1, 0},
                      {1, 0, 1, 1, 1},
                      {0, 1, 0, 0, 1},
                      {1, 1, 0, 0, 1},
                      {0, 1, 1, 1, 0},
                     };
    // Print the solution
    hamCycle(graph1);
   /* Let us create the following graph
      (0)--(1)--(2)
       |   / \   |
       |  /   \  |
       | /     \ |
      (3)       (4)    */
    bool graph2[V][V] = {{0, 1, 0, 1, 0},
                      {1, 0, 1, 1, 1},
                      {0, 1, 0, 0, 1},
                      {1, 1, 0, 0, 0},
                      {0, 1, 1, 0, 0},
                     };
    // Print the solution
    hamCycle(graph2);
    return 0;
}

Java 语言(一种计算机语言,尤用于创建网站)

/* Java program for solution of Hamiltonian Cycle problem
   using backtracking */
class HamiltonianCycle
{
    final int V = 5;
    int path[];
    /* A utility function to check if the vertex v can be
       added at index 'pos'in the Hamiltonian Cycle
       constructed so far (stored in 'path[]') */
    boolean isSafe(int v, int graph[][], int path[], int pos)
    {
        /* Check if this vertex is an adjacent vertex of
           the previously added vertex. */
        if (graph[path[pos - 1]][v] == 0)
            return false;
        /* Check if the vertex has already been included.
           This step can be optimized by creating an array
           of size V */
        for (int i = 0; i             if (path[i] == v)
                return false;
        return true;
    }
    /* A recursive utility function to solve hamiltonian
       cycle problem */
    boolean hamCycleUtil(int graph[][], int path[], int pos)
    {
        /* base case: If all vertices are included in
           Hamiltonian Cycle */
        if (pos == V)
        {
            // And if there is an edge from the last included
            // vertex to the first vertex
            if (graph[path[pos - 1]][path[0]] == 1)
                return true;
            else
                return false;
        }
        // Try different vertices as a next candidate in
        // Hamiltonian Cycle. We don't try for 0 as we
        // included 0 as starting point in hamCycle()
        for (int v = 1; v         {
            /* Check if this vertex can be added to Hamiltonian
               Cycle */
            if (isSafe(v, graph, path, pos))
            {
                path[pos] = v;
                /* recur to construct rest of the path */
                if (hamCycleUtil(graph, path, pos + 1) == true)
                    return true;
                /* If adding vertex v doesn't lead to a solution,
                   then remove it */
                path[pos] = -1;
            }
        }
        /* If no vertex can be added to Hamiltonian Cycle
           constructed so far, then return false */
        return false;
    }
    /* This function solves the Hamiltonian Cycle problem using
       Backtracking. It mainly uses hamCycleUtil() to solve the
       problem. It returns false if there is no Hamiltonian Cycle
       possible, otherwise return true and prints the path.
       Please note that there may be more than one solutions,
       this function prints one of the feasible solutions. */
    int hamCycle(int graph[][])
    {
        path = new int[V];
        for (int i = 0; i             path[i] = -1;
        /* Let us put vertex 0 as the first vertex in the path.
           If there is a Hamiltonian Cycle, then the path can be
           started from any point of the cycle as the graph is
           undirected */
        path[0] = 0;
        if (hamCycleUtil(graph, path, 1) == false)
        {
            System.out.println("\nSolution does not exist");
            return 0;
        }
        printSolution(path);
        return 1;
    }
    /* A utility function to print solution */
    void printSolution(int path[])
    {
        System.out.println("Solution Exists: Following" +
                           " is one Hamiltonian Cycle");
        for (int i = 0; i             System.out.print(" " + path[i] + " ");
        // Let us print the first vertex again to show the
        // complete cycle
        System.out.println(" " + path[0] + " ");
    }
    // driver program to test above function
    public static void main(String args[])
    {
        HamiltonianCycle hamiltOnian=
                                new HamiltonianCycle();
        /* Let us create the following graph
           (0)--(1)--(2)
            |   / \   |
            |  /   \  |
            | /     \ |
           (3)-------(4)    */
        int graph1[][] = {{0, 1, 0, 1, 0},
            {1, 0, 1, 1, 1},
            {0, 1, 0, 0, 1},
            {1, 1, 0, 0, 1},
            {0, 1, 1, 1, 0},
        };
        // Print the solution
        hamiltonian.hamCycle(graph1);
        /* Let us create the following graph
           (0)--(1)--(2)
            |   / \   |
            |  /   \  |
            | /     \ |
           (3)       (4)    */
        int graph2[][] = {{0, 1, 0, 1, 0},
            {1, 0, 1, 1, 1},
            {0, 1, 0, 0, 1},
            {1, 1, 0, 0, 0},
            {0, 1, 1, 0, 0},
        };
        // Print the solution
        hamiltonian.hamCycle(graph2);
    }
}
// This code is contributed by Abhishek Shankhadhar

Python 3

# Python program for solution of
# hamiltonian cycle problem
class Graph():
    def __init__(self, vertices):
        self.graph = [[0 for column in range(vertices)]
                            for row in range(vertices)]
        self.V = vertices
    ''' Check if this vertex is an adjacent vertex
        of the previously added vertex and is not
        included in the path earlier '''
    def isSafe(self, v, pos, path):
        # Check if current vertex and last vertex
        # in path are adjacent
        if self.graph[ path[pos-1] ][v] == 0:
            return False
        # Check if current vertex not already in path
        for vertex in path:
            if vertex == v:
                return False
        return True
    # A recursive utility function to solve
    # hamiltonian cycle problem
    def hamCycleUtil(self, path, pos):
        # base case: if all vertices are
        # included in the path
        if pos == self.V:
            # Last vertex must be adjacent to the
            # first vertex in path to make a cyle
            if self.graph[ path[pos-1] ][ path[0] ] == 1:
                return True
            else:
                return False
        # Try different vertices as a next candidate
        # in Hamiltonian Cycle. We don't try for 0 as
        # we included 0 as starting point in hamCycle()
        for v in range(1,self.V):
            if self.isSafe(v, pos, path) == True:
                path[pos] = v
                if self.hamCycleUtil(path, pos+1) == True:
                    return True
                # Remove current vertex if it doesn't
                # lead to a solution
                path[pos] = -1
        return False
    def hamCycle(self):
        path = [-1] * self.V
        ''' Let us put vertex 0 as the first vertex
            in the path. If there is a Hamiltonian Cycle,
            then the path can be started from any point
            of the cycle as the graph is undirected '''
        path[0] = 0
        if self.hamCycleUtil(path,1) == False:
            print ("Solution does not exist\n")
            return False
        self.printSolution(path)
        return True
    def printSolution(self, path):
        print ("Solution Exists: Following",
                 "is one Hamiltonian Cycle")
        for vertex in path:
            print (vertex, end = " ")
        print (path[0], "\n")
# Driver Code
''' Let us create the following graph
    (0)--(1)--(2)
    | / \ |
    | / \ |
    | /     \ |
    (3)-------(4) '''
g1 = Graph(5)
g1.graph = [ [0, 1, 0, 1, 0], [1, 0, 1, 1, 1],
            [0, 1, 0, 0, 1,],[1, 1, 0, 0, 1],
            [0, 1, 1, 1, 0], ]
# Print the solution
g1.hamCycle();
''' Let us create the following graph
    (0)--(1)--(2)
    | / \ |
    | / \ |
    | /     \ |
    (3)     (4) '''
g2 = Graph(5)
g2.graph = [ [0, 1, 0, 1, 0], [1, 0, 1, 1, 1],
        [0, 1, 0, 0, 1,], [1, 1, 0, 0, 0],
        [0, 1, 1, 0, 0], ]
# Print the solution
g2.hamCycle();
# This code is contributed by Divyanshu Mehta

C

// C# program for solution of Hamiltonian
// Cycle problem using backtracking
using System;
public class HamiltonianCycle
{
    readonly int V = 5;
    int []path;
    /* A utility function to check
    if the vertex v can be added at
    index 'pos'in the Hamiltonian Cycle
    constructed so far (stored in 'path[]') */
    bool isSafe(int v, int [,]graph,
                int []path, int pos)
    {
        /* Check if this vertex is
        an adjacent vertex of the
        previously added vertex. */
        if (graph[path[pos - 1], v] == 0)
            return false;
        /* Check if the vertex has already
        been included. This step can be
        optimized by creating an array
        of size V */
        for (int i = 0; i             if (path[i] == v)
                return false;
        return true;
    }
    /* A recursive utility function
    to solve hamiltonian cycle problem */
    bool hamCycleUtil(int [,]graph, int []path, int pos)
    {
        /* base case: If all vertices
        are included in Hamiltonian Cycle */
        if (pos == V)
        {
            // And if there is an edge from the last included
            // vertex to the first vertex
            if (graph[path[pos - 1],path[0]] == 1)
                return true;
            else
                return false;
        }
        // Try different vertices as a next candidate in
        // Hamiltonian Cycle. We don't try for 0 as we
        // included 0 as starting point in hamCycle()
        for (int v = 1; v         {
            /* Check if this vertex can be
            added to Hamiltonian Cycle */
            if (isSafe(v, graph, path, pos))
            {
                path[pos] = v;
                /* recur to construct rest of the path */
                if (hamCycleUtil(graph, path, pos + 1) == true)
                    return true;
                /* If adding vertex v doesn't
                lead to a solution, then remove it */
                path[pos] = -1;
            }
        }
        /* If no vertex can be added to Hamiltonian Cycle
        constructed so far, then return false */
        return false;
    }
    /* This function solves the Hamiltonian
    Cycle problem using Backtracking. It
    mainly uses hamCycleUtil() to solve the
    problem. It returns false if there
    is no Hamiltonian Cycle possible,
    otherwise return true and prints the path.
    Please note that there may be more than
    one solutions, this function prints one
    of the feasible solutions. */
    int hamCycle(int [,]graph)
    {
        path = new int[V];
        for (int i = 0; i             path[i] = -1;
        /* Let us put vertex 0 as the first
        vertex in the path. If there is a
        Hamiltonian Cycle, then the path can be
        started from any point of the cycle
        as the graph is undirected */
        path[0] = 0;
        if (hamCycleUtil(graph, path, 1) == false)
        {
            Console.WriteLine("\nSolution does not exist");
            return 0;
        }
        printSolution(path);
        return 1;
    }
    /* A utility function to print solution */
    void printSolution(int []path)
    {
        Console.WriteLine("Solution Exists: Following" +
                        " is one Hamiltonian Cycle");
        for (int i = 0; i             Console.Write(" " + path[i] + " ");
        // Let us print the first vertex again
        //  to show the complete cycle
        Console.WriteLine(" " + path[0] + " ");
    }
    // Driver code
    public static void Main(String []args)
    {
        HamiltonianCycle hamiltOnian=
                                new HamiltonianCycle();
        /* Let us create the following graph
        (0)--(1)--(2)
            | / \ |
            | / \ |
            | /     \ |
        (3)-------(4) */
        int [,]graph1= {{0, 1, 0, 1, 0},
            {1, 0, 1, 1, 1},
            {0, 1, 0, 0, 1},
            {1, 1, 0, 0, 1},
            {0, 1, 1, 1, 0},
        };
        // Print the solution
        hamiltonian.hamCycle(graph1);
        /* Let us create the following graph
        (0)--(1)--(2)
            | / \ |
            | / \ |
            | /     \ |
        (3)     (4) */
        int [,]graph2 = {{0, 1, 0, 1, 0},
            {1, 0, 1, 1, 1},
            {0, 1, 0, 0, 1},
            {1, 1, 0, 0, 0},
            {0, 1, 1, 0, 0},
        };
        // Print the solution
        hamiltonian.hamCycle(graph2);
    }
}
// This code contributed by Rajput-Ji

服务器端编程语言(Professional Hypertext Preprocessor 的缩写)

// PHP program for solution of
// Hamiltonian Cycle problem
// using backtracking
$V = 5;
/* A utility function to check if
the vertex v can be added at index 'pos'
in the Hamiltonian Cycle constructed so far
(stored in 'path[]') */
function isSafe($v, $graph, &$path, $pos)
{
    /* Check if this vertex is
    an adjacent vertex of the
    previously added vertex. */
    if ($graph[$path[$pos - 1]][$v] == 0)
        return false;
    /* Check if the vertex has already been included.
    This step can be optimized by creating an array
    of size V */
    for ($i = 0; $i <$pos; $i++)
        if ($path[$i] == $v)
            return false;
    return true;
}
/* A recursive utility function
to solve hamiltonian cycle problem */
function hamCycleUtil($graph, &$path, $pos)
{
    global $V;
    /* base case: If all vertices are included in
    Hamiltonian Cycle */
    if ($pos == $V)
    {
        // And if there is an edge from the
        // last included vertex to the first vertex
        if ($graph[$path[$pos - 1]][$path[0]] == 1)
            return true;
        else
            return false;
    }
    // Try different vertices as a next candidate in
    // Hamiltonian Cycle. We don't try for 0 as we
    // included 0 as starting point hamCycle()
    for ($v = 1; $v <$V; $v++)
    {
        /* Check if this vertex can be added
        to Hamiltonian Cycle */
        if (isSafe($v, $graph, $path, $pos))
        {
            $path[$pos] = $v;
            /* recur to construct rest of the path */
            if (hamCycleUtil($graph, $path,
                                     $pos + 1) == true)
                return true;
            /* If adding vertex v doesn't lead to a solution,
            then remove it */
            $path[$pos] = -1;
        }
    }
    /* If no vertex can be added to Hamiltonian Cycle
    constructed so far, then return false */
    return false;
}
/* This function solves the Hamiltonian Cycle problem using
Backtracking. It mainly uses hamCycleUtil() to solve the
problem. It returns false if there is no Hamiltonian Cycle
possible, otherwise return true and prints the path.
Please note that there may be more than one solutions,
this function prints one of the feasible solutions. */
function hamCycle($graph)
{
    global $V;
    $path = array_fill(0, $V, 0);
    for ($i = 0; $i <$V; $i++)
        $path[$i] = -1;
    /* Let us put vertex 0 as the first vertex in the path.
    If there is a Hamiltonian Cycle, then the path can be
    started from any point of the cycle as the graph is
    undirected */
    $path[0] = 0;
    if (hamCycleUtil($graph, $path, 1) == false)
    {
        echo("\nSolution does not exist");
        return 0;
    }
    printSolution($path);
    return 1;
}
/* A utility function to print solution */
function printSolution($path)
{
    global $V;
    echo("Solution Exists: Following is ".
         "one Hamiltonian Cycle\n");
    for ($i = 0; $i <$V; $i++)
        echo(" ".$path[$i]." ");
    // Let us print the first vertex again to show the
    // complete cycle
    echo(" ".$path[0]." \n");
}
// Driver Code
/* Let us create the following graph
(0)--(1)--(2)
    | / \ |
    | / \ |
    | / \ |
(3)-------(4) */
$graph1 = array(array(0, 1, 0, 1, 0),
    array(1, 0, 1, 1, 1),
    array(0, 1, 0, 0, 1),
    array(1, 1, 0, 0, 1),
    array(0, 1, 1, 1, 0),
);
// Print the solution
hamCycle($graph1);
/* Let us create the following graph
(0)--(1)--(2)
    | / \ |
    | / \ |
    | / \ |
(3) (4) */
$graph2 = array(array(0, 1, 0, 1, 0),
                array(1, 0, 1, 1, 1),
                array(0, 1, 0, 0, 1),
                array(1, 1, 0, 0, 0),
                array(0, 1, 1, 0, 0));
// Print the solution
hamCycle($graph2);
// This code is contributed by mits
?>

java 描述语言


输出:

Solution Exists: Following is one Hamiltonian Cycle
0 1 2 4 3 0
Solution does not exist

注意,上面的代码总是打印一个从 0 开始的循环。起点应该无关紧要,因为周期可以从任何一点开始。如果要更改起点,应该对上述代码进行两处更改。
更改“路径[0]= 0;”到“路径[0]= s;”哪里是你的新起点。也将循环”改为(int v = 1;V如果发现有不正确的地方,或者想分享更多关于上述话题的信息,请写评论。


推荐阅读
  • 本题探讨如何通过最大流算法解决农场排水系统的设计问题。题目要求计算从水源点到汇合点的最大水流速率,使用经典的EK(Edmonds-Karp)和Dinic算法进行求解。 ... [详细]
  • 在多线程编程环境中,线程之间共享全局变量可能导致数据竞争和不一致性。为了解决这一问题,Linux提供了线程局部存储(TLS),使每个线程可以拥有独立的变量副本,确保线程间的数据隔离与安全。 ... [详细]
  • 在 Flutter 开发过程中,开发者经常会遇到 Widget 构造函数中的可选参数 Key。对于初学者来说,理解 Key 的作用和使用场景可能是一个挑战。本文将详细探讨 Key 的概念及其应用场景,并通过实例帮助你更好地掌握这一重要工具。 ... [详细]
  • 开发笔记:9.八大排序
    开发笔记:9.八大排序 ... [详细]
  • 本题探讨了在一个有向图中,如何根据特定规则将城市划分为若干个区域,使得每个区域内的城市之间能够相互到达,并且划分的区域数量最少。题目提供了时间限制和内存限制,要求在给定的城市和道路信息下,计算出最少需要划分的区域数量。 ... [详细]
  • 深入理解Java泛型:JDK 5的新特性
    本文详细介绍了Java泛型的概念及其在JDK 5中的应用,通过具体代码示例解释了泛型的引入、作用和优势。同时,探讨了泛型类、泛型方法和泛型接口的实现,并深入讲解了通配符的使用。 ... [详细]
  • Scala 实现 UTF-8 编码属性文件读取与克隆
    本文介绍如何使用 Scala 以 UTF-8 编码方式读取属性文件,并实现属性文件的克隆功能。通过这种方式,可以确保配置文件在多线程环境下的一致性和高效性。 ... [详细]
  • 并发编程:深入理解设计原理与优化
    本文探讨了并发编程中的关键设计原则,特别是Java内存模型(JMM)的happens-before规则及其对多线程编程的影响。文章详细介绍了DCL双重检查锁定模式的问题及解决方案,并总结了不同处理器和内存模型之间的关系,旨在为程序员提供更深入的理解和最佳实践。 ... [详细]
  • 本文提供了使用Java实现Bellman-Ford算法解决POJ 3259问题的代码示例,详细解释了如何通过该算法检测负权环来判断时间旅行的可能性。 ... [详细]
  • 本文详细探讨了JDBC(Java数据库连接)的内部机制,重点分析其作为服务提供者接口(SPI)框架的应用。通过类图和代码示例,展示了JDBC如何注册驱动程序、建立数据库连接以及执行SQL查询的过程。 ... [详细]
  • Java编程实践:深入理解方法重载
    本文介绍了Java中方法重载的概念及其应用。通过多个示例,详细讲解了如何在同一类中定义具有相同名称但不同参数列表的方法,以实现更灵活的功能调用。 ... [详细]
  • 探索1000以内的完美数:因数和等于自身
    本文探讨了如何在1000以内找到所有完美数,即一个数的因数(不包括自身)之和等于该数本身。例如,6是一个完美数,因为1 + 2 + 3 = 6。通过编程实现这一过程,可以更好地理解完美数的特性。 ... [详细]
  • 解决JAX-WS动态客户端工厂弃用问题并迁移到XFire
    在处理Java项目中的JAR包冲突时,我们遇到了JaxWsDynamicClientFactory被弃用的问题,并成功将其迁移到org.codehaus.xfire.client。本文详细介绍了这一过程及解决方案。 ... [详细]
  • 作者:守望者1028链接:https:www.nowcoder.comdiscuss55353来源:牛客网面试高频题:校招过程中参考过牛客诸位大佬的面经,但是具体哪一块是参考谁的我 ... [详细]
  • 深入理解Redis的数据结构与对象系统
    本文详细探讨了Redis中的数据结构和对象系统的实现,包括字符串、列表、集合、哈希表和有序集合等五种核心对象类型,以及它们所使用的底层数据结构。通过分析源码和相关文献,帮助读者更好地理解Redis的设计原理。 ... [详细]
author-avatar
夜凄凉2502887267
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有